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A B S T R A C T  

We study the Hilbert series of finitely generated prime PI algebras. We 
show that given such an algebra A there exists some finite dimensional 
subspace V of A which contains 1A and generates A as an algebra such 
that the Hilbert series of A with respect to the vector space V is a rational 
function. 

1. I n t r o d u c t i o n  

Given a field k, a k -a lgebra  A, and  a finite d imens iona l  k-subspace  of A which 

contains  1A and genera tes  A as a k-a lgebra ,  we define the  H i l b e r t  s e r i e s  of A 

wi th  respect  to V to be 

(1.1) HA(t) :---- 1 + ~ d i m ( V n / v n - 1 ) t  n. 

The  Hi lbe r t  series is somet imes  called the  P o i n c a r 6  s e r i e s .  One is especial ly  

in teres ted  in the  case t ha t  HA (t) is a r a t iona l  funct ion of t. The  following theorem 

shows the significance of this.  

THEOREM 1.1: Let  A be a ~nitely generated k-algebra with rational Hilbert 

series with respect to some generating subspace V. 

• I f  HA (t) has radius of convergence 1, then G K d i m ( A )  is equal to the order of 

the pole of  HA (t) at t ---- 1. In particular, the GK dimension is a nonnegative 

integer; moreover, d i m ( V  ~) is a polynomial in n for all n sufficiently large. 

• I f  the radius of convergence of HA(t) < 1, then A has exponential growth. 

Received February 14, 2002 



J. P. BELL Isr. J. Math. 

• If  HA(t) has radius of convergence greater than 1, then HA(t) is a polyno- 
mial and A is finite dimensional over k. 

Proof See Theorem 12.6.2 on page 175 of [6]. | 

There are several examples of algebras which have rational Hilbert series. On 

page 176 of [6], the following list of algebras which have rational Hilbert series is 

given. 

• A finitely generated commutative algebra. 

• Enveloping algebras of finitely generated Lie algebras. 

• Finitely presented monomial algebras ([5], [12]). 

• Trace rings of generic matrices (page 204 of [4]). 

• Generic PI algebras ([1]). 

• The group algebra of a finitely generated abelian-by-finite group ([2]). 

• The group algebra of the first Heisenberg group ([8]). 

• A Noetherian, connected graded algebra which is fully bounded ([10]). 

• A Noetherian, connected graded algebra which has finite global dimension 

([11]). 

The proofs of the first two items follow from material in Chapter 7 of [6]. In 

this paper, we prove the following result. 

THEOREM 1.2: Let A be a finitely generated prime PI k-algebra. Then A has 

rational Hilbert series with respect to some generating subspace V. 

We note that this result is not necessarily true if A is not prime. A simple 

construction due to Warfield (see Theorem 2.9 of [6]) shows this. For example, 

we let I be the ideal of k{x, y} generated by (x) 3 and xyix for i not a perfect 

square and consider the algebra 

A =  k{x,y}/I. 

Notice that A has a basis given by 

{yixyJ2xyel i ,j ,~ > 0} [A {yixyJ I i , j  >_ 0} U {yi l i _> 0}. 
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Thus if V is the vector space spanned by 1 and the images of x and y in A, then 

dim(V~) = E 
o<j<,/~7 

-> E 

>- E 
v4~<j_<¢~ 

(n2J2)+(n+l)+(n+l)2 

<) 

1 
~i : =  0 

We create the vector space 

_ > ( v ~ -  ~ -  1)n(n - 2)/8 

>_n5/2/30 for all n sufficiently large. 

A straightforward estimate shows that  

dim(V~) < (x/-~ + l ) n ( n - 1 ) / 2  + (n + l )  - 2 + ( n + l ) < 2 n  5/2 

for all n _> 2. Thus A has GK dimension 2.5. Since A is a homomorphic image of 

k{x, y}/(x) 3, which satisfies the identity (xlx2 - x2xl) 3, we see that  A must be 

PI. From Theorem 1.1, we see that  A cannot have a rational Hilbert series with 

respect to any generating vector space V. 

Stafford [9] has constructed a finitely generated PI  algebra A along with gen- 

erating vector spaces V and W such that  A has a rational Hilbert series with 

respect to V but not with respect to W. We follow notes of Lorenz in giving his 

construction. Let 

s= (k+(z) k[x,y,z]  
(:) C 

Clearly S is PI since it is a subring of a matrix ring over a commutat ive ring. 

Also, it is easy to check that  S is finitely generated as a k-algebra. Define 

if i is a perfect square; and 
otherwise. 

We define 

U := E kzxiei + kzyi(1 - ei). 
i----0 

(z 2,zxy) + U (z, xy) ) C S. 
I : =  ~, (z ~,zxy) (z, xy) - 
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Notice tha t  I is an ideal of S. Let A -- S/ I  and let ei,j denote the matr ix  with 1 

in the (i, j)th entry and zeros everywhere else. Stafford defines V to be the image 

in A of the k-vector space 

kel,1 + kel,2 + kze2,1 + ke2,2 + kxe2,2 + kye2,2 

and defines W to be V + kzxe2,1. He shows tha t  for n >_ 2, 

d im(V n) = d im(V n - l )  + 7 

and 

d i m ( W  n) = d im(W n - l )  + 7 - en-2. 

If  HA,V(t) and HA,w(t) denote the Hilbert series of A with respect to V and 

with respect to W respectively, then 

HA,V(t) = 1 + 5t + 7t2/(1 -- t) 

while 

Observe tha t  

HA,W(t) ---- 1 + 6 t  + 7t2/(1 -- t ) - -  E x  i2+2. 

i>0 

E xi2+2 
i>_o 

is not  rat ional  by Theorem 1.1 and hence HA,w(t) is not  rational. 

2. B a c k g r o u n d  r e s u l t s  o n  G r S b n e r  b a s e s  

Given a field k and a finitely generated k-algebra A, we write 

A = k { t ,  . . . .  ,tin}~1, 

where I is the kernel of the map from the free algebra k{tl . . . .  , tin} onto A. Let 

V denote the iinage of the k-vector space k + ktl + .. .  + ktm in A. Comput ing  

a (noncomnmtat ive)  G r S b n e r  bas i s  for the ideal I allows one to compute  the 

dimension of V n for all values of n. We put  a d e g r e e  l e x i c o g r a p h i c a l  o r d e r i n g  

on the variables by declaring tha t  

tl ~ t2 ~ " '" ~ tin. 

The set of words in t l  . . . .  , tm forms a k-basis for the free algebra k{ t l , . . . ,  tm}. 
Given a nonzero element a E I ,  we express a as a k-linear combinat ion of words 
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in tl . . . . .  tm. We define in(a),  the i n i t i a l  m o n o m i a l  of a, to be the lexicograph- 

ically greatest  word with a nonzero coefficient in the expression for a as a k-linear 

combinat ion  of words in tl . . . .  , tm. We define in(0) -- 0 and we define 

(2.2) in( I )  := ({in(a)l a C I}) .  

We have the following theorem. 

PROPOSITION 2.1: Let  

V = k + kt l  + . . .  + ktm + I c_ k{ t l  . . . .  , t m } / I  

and let 

W = k + kt l  + . . . +  kt,~ + i n ( I )  C_ k { t l , . . . , t m } / i n ( I ) .  

Then d im(V n) = d i m ( W  '~) for all n >_ 1. 

Proof: The proof  is similar to tha t  of Theorem 15.3 in [3]. | 

COROLLARY 2.1: Suppose k { t l , . . . ,  tm } / I has the property that  in( I )  is finitely 

generated. Then k { t l . . . .  , tm } / I has rational Hilbert series. 

Proof: By the preceding proposit ion,  k{ t l  . . . .  , t m } / I  has the same Hilber t  series 

as k { t b . . . , t m } / i n ( I ) .  By [5], [12] we have tha t  this Hi lber t  series must  be 

rational.  | 

3. P r o o f s  

Let A be a finitely generated pr ime PI  k-algebra over some field k. Then  it is 

well-known tha t  the G K  dimension of A is some nonnegat ive integer d and for 

any generat ing subspace V of A, there exists a positive constant  C = C ( V )  such 

tha t  

d im V ~ < Cn  d. 

Fur thermore ,  we have a polynomial  ring 

(3.3) k [ x t , . . . ,  x~t] C_ Z(A) .  

Extend  the set {xl . . . . .  Xd} to a generat ing set for A, say 

(3.4) {x l  . . . .  , Xd, Yl,- • -, Ym}. 
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Let V be the k-span of {1, X l , . . . ,  Xd, Y l , . . . ,  Ym}. Then there is some positive 

constant  C such tha t  d im(V n) <: e n  d for all n > 1. Let N be a positive integer 

satisfying 

(3.5) N > 2Cd!. 

Let w be a word in Yl . . . .  , Ym. Let wi denote the subword of w consisting of the 

first i letters of w (we take w0 to be 1). Let 

length(w) 

(3.6) f~ = ( w  Z WiI:~i(Xl . . . . .  Xd) ~-- O'Plength(w) ~ O}" 
i=O 

LEMMA 3.1: Let w be a word of length a t / e a s t  N.  Then some initial subword 
of w is in ~. 

Proof: Notice tha t  

(3.7) ®n := {wivl v a monomial  in xl  . . . .  , Xd of degree at most  n - i} C_ V n 

cannot  be a linearly independent set for n sufficiently large. Indeed, if this were 

the case, then V n would have dimension at least 

N 
~-~ ( n -  i " ,~ (N + 1)nd/d,, as n--~ (x)~ 

,, i:O 

since there are (~-~+d) monomials  in x l , . - . ,  xd of degree n - i. Since 

(N ÷ 1)nd/d! > 2 dim(V ~) 

for all n, we see that  for n sufficiently large, the set ~ n  is linearly dependent.  

Hence there exist polynomials p i ( x l , . . . ,  Xd), not all zero, such tha t  

N 

Z wiPi(Xl . . . .  ' xn) = O. 
i=O 

Hence every word in Y l , . - . ,  Ym of length at least N has some initial subword in 
• . | 

I t  follows tha t  there exists a finite subset ® of ~: such tha t  every word in 

Yl . . . . .  Ym of length at  least N has some word in 6 as an initial subword. Let 

w E 6 ,  and as before let wi denote the subword of w consisting of the first i 

letters of w, where i ranges from 0 to the length of w. Then we have 

length(w) 

(3 .8)  E wiPw,i(Xl . . . . .  Xd) ---- 0, 
i--0 
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w i th  Pw,length(w) # 0. Let  

(3.9) q ( x l  . . . . .  :Fd) ----- H Pw,length(w)" 
'wE~ 

Since q(xl  . . . . .  xd) E Z ( A ) ,  we have t ha t  the  nonnegat ive  integer powers  of 

q(Xl . . . . .  Xd) form an Ore set which we call  12. Let  

(3.10) B -- ~ - I A .  

We shall  now show tha t  B has ra t iona l  Hi lbe r t  series wi th  respect  to some vector  

space and  use this  fact,  a long wi th  the  descr ip t ion  of our vector  space, to  show 

tha t  A has a ra t iona l  Hi lber t  series. 

THEOREM 3.1: Let  B be as in equation (3.10). Then B is tinitely presented 

and  there exists a vector space V such that  B has a rational Hilbert series with 

respect to V.  

Proo£" We define new variables  ' P Yl . . . .  , y , , ,  which sat isfy 

(3.11) y~ - - - -  yiq -1 ,  for 1 < i < m, 

where Yl . . . .  , Ym are as in equa t ion  (3.4). We define a set 6 '  as follows. Given a 

word w in y l ,  •. •, ym in 6 ,  we let u denote  the  cor responding  word in Yl; • • •, Ym: 

We define ®~ to be the  set of all words in y~ . . . . .  Y~m which cor respond to some 

word in 6 .  Let  w be a word in Yl . . . . .  y,~ in ~ and  let u denote  the  cor responding  

word in ' Yl . . . . .  Ym" Then  u = wq -length(w) As before, we let ui denote  the  

subword  of u consis t ing of the first i l e t te rs  of u. Mul t ip ly ing  b o t h  sides of 

equa t ion  (3.8) by qn/Pu,,length(w ) and using the fact t ha t  uiq i = wi, we see 

(3.12) 

length(u) 
length(w)--i n i n  

u iq  l~w,i / l~w,length(w ) -~ O. 
i----0 

For each w E 6 ,  we crea te  new var iables  

0~,~ for 1 <_ i < length(w) .  

Consider  the  free a lgebra  F on genera tors  

(3.13) 

:=  {T, S} U {O~,i[ w E 6 ,  1 < i < length(w)} U {Xl  . . . . .  Xd,  Y1 . . . . .  Ym}. 
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We have 

(3.14) 

Let 

a surjection • from F onto B given by 

• (T) = q ( x t , . . . ,  Xd), 

• (S) = 1 / q ( x l , . . . ,  Xd), 
(~(Ow,i) -- Jength(w)--iD I D  t 1 I w , i / l  w,length(w) for W C ®, 1 < i < length(w), 

' for 1 < i < d, • (Xi)  = xi 

' for 1 < j < m. • ( ~ )  = y3 - _ 

(3.15) I := ker(¢).  

For convenience, we define 

(3.16) 3 := {T, S} U {0w,i[ w e ®, 1 _< i < length(w)} U { X b . . . ,  Xd}.  

Note that  0(3)  is a subset of Z(B) .  From equation (3.12), we have for u c 6 '  

l ength(w)- -  1 

(3.17) u +  E UiOw,~ =O m o d I .  
i = 0  

We shall now construct a Gr5bner basis for our algebra B. We put a degree 

lexicographical ordering on our generating set by placing some ordering on the 

Ow,i and declaring that  

(3.18) 0w,i < Xd for all w E 6 ,  1 _< i < length(w), 

and declaring that  

(3.19) Y1 > " ' "  :> Ym > S > T > X1 > . . .  > X d .  

We first observe that  the elements of the set 

{az I z C 3, a C ~ , a  > z} 

are all in in(I),  since za - az E I for all z E 3 and a E ~ with a < z. Hence any 

mononfial can be written (rood in(I)) as vu, where u is a monomial in Y1,-.- ,  Ym 

and v is a monomial in elements of 3. Next observe that  equation (3.17) gives 

that  for any word u in Y'I, . . . ,Y'm in @', the corresponding word in Y1, . . . ,~ ,~  

is in in(I).  Define ®" to be the set of words in Y1 . . . .  , Y,~ corresponding to the 

words in y~ , . . . ,  Y'm in ®~. Define J to be the ideal generated by the elements of 

®" and by the elements of the set 

{az[ z e 3,  a e ~ ,  a > z}; 
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that is, 

(3.20) J : = / ~ "  U {az I = E 3, a E ~ ,  a > z}). 

Since every word of length N has some initial subword in ~ ' ,  we see that  every 

monomial in Y I , . . . ,  Ym of length at least N is in in(I).  Thus if a monomial w 

is in in(I)  \ J ,  then w must have degree at most N in 1~],... ,  Yd. Hence the set 

fiR of monomials in Y1,- . . ,  l~m which are not in in(I)  is a finite set. Let u E fiR. 

Consider the set of monomials, v, in elements of 3 such that  vu E in(I).  The 

monomial ideal in k[3] generated by such v is of course finitely generated by, say, 

vuA, . . . ,  't'~,~,~. We make the following claim. 

CLAIM: in(l)  is generated by the finite set of lnonomials 

(3.21) @"U{vu,iu[uEfiR, l < i < m , , } U { z a l z E 3 ,  aECS, z > a } .  

Proof." Let r E in(I).  We may assume that  r is a monomial of the form vu, where 

u is a monomial in ] q , . . . ,  1;,  and v is a monomial in elements of 3. If 'u ¢ fiR, 

then some initial subword of u must be in G"  and we obtain the desired result. 

Hence u E fiR. By construction, v is in the monomial ideal of k[3] generated by 

v, ,1 , . . . ,  v~,,~,,, and so we again see that  v'u is in the ideal generated by the set 

given in i tem (3.21). | 

From the claim we see that  in(I)  is finitely generated and hence I is finitely 

generated. It follows that  B is finitely presented. By Corollary 2.1, we have 

that. B has a rational Hilbert series with respect, to the vector space spanned by 

elements of i tem (3.13). | 

From this we obtain the following corollary. 

COROLLARY 3.1: The algebra A has a rational Hilbert series with respect to 

s e i n e  "v~ctor s p a c e .  

Let W denote the k-vector space spanned by the elements of ~5. By construc- 

tion, (b(T~5) C A and it generates A as a k-algebra and has the property that  

1A E q~(T~). From our theorem, the vector space W C_ B has the property that  

d im(W n) = f (n )  for some polynomial f ,  tbr all n sufficiently large. Since Wq is 

a generating subspace for A and q is regular, we have 

dim((Wq)'~) = dim (W n ) 

and hence A, too, has rational Hilbert series. | 

We conjecture the following. 
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CONJECTURE 3.1: Let A be a finitely generated right Noetherian PI  algebra. 

Then A is finitely presented. 

In the case tha t  A is a finitely generated Noether ian  PI  ring, it is known (see 

[7]) tha t  G K d i m ( d )  = G K d i m ( A / P )  for some P • Spec(d) .  I t  follows tha t  A 

has integer G K  dimension in the case tha t  A is a finitely generated Noether ian  

P I  algebra, We therefore make the following conjecture. 

CONJECTURE 3.2: Let A be a finitely generated Noetherian PI  algebra. Then 

A has a rational Hilbert series with respect to some generating vector space V. 
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