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ABSTRACT

We study the Hilbert series of finitely generated prime PI algebras. We
show that given such an algebra A there exists some finite dimensional
subspace V' of A which contains 14 and generates A as an algebra such
that the Hilbert series of A with respect to the vector space V is a rational
function.

1. Introduction

Given a field k, a k-algebra A, and a finite dimensional k-subspace of A which
contains 1,4 and generates A as a k-algebra, we define the Hilbert series of A
with respect to V to be

(1.1) Hy(t) =1+ Y dim(V"/ V"),

n=1
The Hilbert series is sometimes called the Poincaré series. One is especially
interested in the case that H 4(t) is a rational function of t. The following theorem
shows the significance of this.

THEOREM 1.1: Let A be a finitely generated k-algebra with rational Hilbert
series with respect to some generating subspace V.

o If H4(t) has radius of convergence 1, then GKdim(A) is equal to the order of
the pole of H4(t) att = 1. In particular, the GK dimension is a nonnegative
integer; moreover, dim(V"™) is a polynomial in n for all n sufficiently large.

o If the radius of convergence of H4(t) < 1, then A has exponential growth.
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o If H4(t) has radius of convergence greater than 1, then H4(t) is a polyno-
mial and A is finite dimensional over k.

Proof:  See Theorem 12.6.2 on page 175 of [6]. |

There are several examples of algebras which have rational Hilbert series. On
page 176 of [6], the following list of algebras which have rational Hilbert series is
given.

A finitely generated commutative algebra.

Enveloping algebras of finitely generated Lie algebras.

Finitely presented monomial algebras ([5], [12]).

e Trace rings of generic matrices (page 204 of [4]).

Generic PI algebras ([1]).

The group algebra of a finitely generated abelian-by-finite group ([2]).

e The group algebra of the first Heisenberg group ([8]).
e A Noetherian, connected graded algebra which is fully bounded ([10}).

o A Noetherian, connected graded algebra which has finite global dimension
([11]).

The proofs of the first two items follow from material in Chapter 7 of [6]. In
this paper, we prove the following result.

THEOREM 1.2: Let A be a finitely generated prime PI k-algebra. Then A has
rational Hilbert series with respect to some generating subspace V.

We note that this result is not necessarily true if A is not prime. A simple
construction due to Warfield (see Theorem 2.9 of [6]) shows this. For example,

we let T be the ideal of k{z,y} generated by (x)® and zy'z for i not a perfect
square and consider the algebra

A=k{z,y}/I.
Notice that A has a basis given by

{v'zy zy’| 4,5, € > 0} U {g'zy?| i,5 > 0} U {u' | i > O}
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Thus if V is the vector space spanned by 1 and the images of x and y in A, then

= 2 (") (") e
— 42
Z\/"W%s\/ﬁ <n 2] )
n/2
2\/n7§<¢‘( ? )
>(Vn—+/n/2~1)n(n—2)/8

>n®/? /30 for all n sufficiently large.

A straightforward estimate shows that

n+1

dim(V") < (v + Dn(n - 1)/2 + ( 5 ) + (n +1) < 20%/2
for all n > 2. Thus A has GK dimension 2.5. Since A is a homomorphic image of
k{x,y}/(x)3, which satisfies the identity (z1x5 — 271)3, we see that A must be
PI. From Theorem 1.1, we see that A cannot have a rational Hilbert series with
respect to any generating vector space V.

Stafford [9] has constructed a finitely generated PI algebra A along with gen-
erating vector spaces V and W such that A has a rational Hilbert series with
respect to V but not with respect to W. We follow notes of Lorenz in giving his

construction. Let

(1

Clearly S is PI since it is a subring of a matrix ring over a commutative ring.

k[z,y, 2] o
k[%y,z’]) C My (kfz,y,z]).

Also, it is easy to check that S is finitely generated as a k-algebra. Define
o { 1 if ¢ is a perfect square; and
€ = .
0 otherwise.

We create the vector space

o0
U:= Z kza'e; + kzy' (1 — €).
=0
We define (2 ) ( )
2 zay)+ U (z22y >
I:= cSs.
( (2%, 22y)  (2,29) ) =



4 J. P. BELL Isr. J. Math.

Notice that I is an ideal of S. Let A = S/I and let e; ; denote the matrix with 1
in the (4, 7)™ entry and zeros everywhere else. Stafford defines V to be the image
in A of the k-vector space

kei 1+ keia+ kzeo 1 + kea o + kxea s + kyea o
and defines W to be V 4 kzxey ;. He shows that for n > 2,
dim(V™) = dim(V"~ 1) + 7
and
dim(W") = dim(W"™ ") + 7 — €p_a.
If Hyv(t) and Hqw(t) denote the Hilbert series of A with respect to V' and
with respect to W respectively, then
Hav(t) =1+5t+7t2/(1 1)

while
Haw(t)=1+6t+72/(1-t) = > 2" +2
i>0
Observe that

-2
§ ::L‘l +2

i>0

is not rational by Theorem 1.1 and hence H 4w (¢) is not rational.

2. Background results on Grdobner bases

Given a field k and a finitely generated k-algebra A, we write
A=k{tr,...,tm}/1,

where I is the kernel of the map from the free algebra k{t1,...,t,} onto A. Let
V denote the image of the k-vector space k + kty + - -+ + kt,, in A. Computing
a (noncommutative) Grobner basis for the ideal I allows one to compute the
dimension of V™ for all values of n. We put a degree lexicographical ordering
on the variables by declaring that

f <ty <oor<tm.

The set of words in ty,...,t, forms a k-basis for the free algebra k{t,,...,tn}.
Given a nonzero element a € I, we express a as a k-linear combination of words
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inty,...,tn. We define in(a), the initial monomial of a, to be the lexicograph-
ically greatest word with a nonzero coefficient in the expression for a as a k-linear
combination of words in ¢1,...,¢,. We define in(0) = 0 and we define

(2.2) in(I) ;= {in(a)| a € I}).

We have the following theorem.

ProrPoOSITION 2.1: Let
V=k+ktr+ -+ ktm+1Ck{tr,....tn}/I

and let
W=k+kt; + -+ kt, + in(I) C k{t1,...,tm}/in(I).

Then dim(V?") = dim(W™) for all n > 1.
Proof: The proof is similar to that of Theorem 15.3 in [3]. |

COROLLARY 2.1: Suppose k{ti1,...,tm}/I has the property that in(I) is finitely
generated. Then k{ty,...,t,,}/I has rational Hilbert series.

Proof: By the preceding proposition, k{t1,. .., ¢, }/I has the same Hilbert series
as k{t1,....tm}/in{I). By [5], [12] we have that this Hilbert series must be
rational. |

3. Proofs

Let A be a finitely generated prime PI k-algebra over some field k. Then it is
well-known that the G dimension of A is some nonnegative integer d and for
any generating subspace V of A, there exists a positive constant C = C(V) such
that

dim V™ < Cn?.

Furthermore, we have a polynomial ring
(3.3) klzy,...,xzq) C Z(A).
Extend the set {zy,...,24} to a generating set for A, say

(34) {Ilv-“vl"daylv'-sym}'
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Let V be the k-span of {1,21,...,24,Y1,-..,¥m}. Then there is some positive
constant C such that dim(V™) < Cn¢ for all n > 1. Let N be a positive integer
satisfying

(3.5) N > 204d.

Let w be a word in yy, ..., ¥m. Let w; denote the subword of w consisting of the
first ¢ letters of w (we take wp to be 1). Let

length{w)
Z wiPi(xlw'“’xd) :prlength(uv) #O}

1=0

(3.6) T = {w

LEMMA 3.1: Let w be a word of length at least N. Then some initial subword
ofw isin ¥.

Proof: Notice that
(3.7) 6, :={w;v| v a monomial in x;,...,zq of degree at most n — i} C V"

cannot be a linearly independent set for n sufficiently large. Indeed, if this were
the case, then V" would have dimension at least

N :
Z(H_H-d) ~ (N +1)n?/d!, asn — oo,

=0 d
since there are ("*;J"d) monomials in z1,..., x4 of degree n — 4. Since

(N 4+ Dnd/d! > 2 dim(V™)

for all n, we see that for n sufficiently large, the set &,, is linearly dependent.
Hence there exist polynomials p;(x1,...,2q), not all zero, such that

N
Zwip,-(;r,l, ceoyy) =0.
s

Hence every word in y, ..., ym of length at least N has some initial subword in
T. ]

It follows that there exists a finite subset & of ¥ such that every word in
Y1, -.,Ym Of length at least NV has some word in & as an initial subword. Let
w € &, and as before let w; denote the subword of w consisting of the first i
letters of w, where i ranges from 0 to the length of w. Then we have

length(w)
(3.8) Z w;i Py i(21,...,24) =0,

i=0
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with Pw,length(w) 79 0. Let

(39) Q(-Tl, ceen -T'd) = H Pw,length(w)-
weS
Since ¢{z1,...,24) € Z(A), we have that the nonnegative integer powers of
q(z1,...,24) form an Ore set which we call Q. Let
(3.10) B =04

We shall now show that B has rational Hilbert series with respect to some vector
space and use this fact, along with the description of our vector space, to show
that A has a rational Hilbert series.

THEOREM 3.1: Let B be as in equation (3.10). Then B is finitely presented
and there exists a vector space V such that B has a rational Hilbert series with
respect to V.

Proof: We define new variables y{, ..., y/,, which satisfy

(3.11) yi =g, for1<i<m,

where y1,...,ym are as in equation (3.4). We define a set & as follows. Given a
word w in y1,. .., ym in &, we let u denote the corresponding word in 4y, ..., y,,.
We define &' to be the set of all words in y1,...,y), which correspond to some
word in &. Let w be a word in yy, . .., ¥y, in & and let u denote the corresponding
word in y},...,y,,. Then u = wq™'*"8h(¥) ~ Ag hefore, we let u; denote the

subword of u consisting of the first ¢ letters of w. Multiplying both sides of
equation (3.8) by ¢" /P, jength(w) and using the fact that wiqt = w;, we see

length(u)

(3.12) Z uiqlength(w)_iPw,i/Pw,length(‘w) = (.
i=0

For each w € &, we create new variables
8. ; for 1< i< length{w).

Consider the free algebra F' on generators
(3.13)
G :={T,S}U{fy: we&,1<i<length(w)}U{Xy,...,Xq, Y1,.... Y0}
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We have a surjection ® from F' onto B given by
Q(T) = Q(xlv R 3xd)’
®(S5) = 1/g(z1,.. ., xq),

(3.14)  ®(b, ‘)_ 'en&th(w) ' Pu.i/ P jength(w) for w € 6,1 < i < length(w),
O(X;) = for 1 <i<d,
<I>(Y])—y] for1<j<m.

Let

(3.15) I := ker(®).

For convenience, we define
(3.16) 3:={T,S}U{by:| we&,1<i<length(w)}U{Xy,...,Xq}.

Note that ®(3) is a subset of Z(B). From equation (3.12), we have for u € &’

length(w)—1
(3.17) u+ E Ui =0 modl.
i=0
We shall now construct a Grobner basis for our algebra B. We put a degree
lexicographical ordering on our generating set by placing some ordering on the
0.,; and declaring that

(3.18) 0y, < Xq forallwe &,1 <4< length(w),
and declaring that
(3.19) Yi> - >Yn>8S>T>X:>--->Xa
We first observe that the elements of the set

{az] z € 3,a € B,a > 2}

are all in in(7), since za — az € I for all z € 3 and a € & with a < z. Hence any
monomial can be written (mod in(7)) as vu, where u is a monomial in Y7,...,Y,,
and v is a monomial in elements of 3. Next observe that equation (3.17) gives
that for any word u in yi,...,y,, in &, the corresponding word in Y3,..., Y
is in in(I). Define &” to be the set of words in Y1,...,Y}, corresponding to the
words in yi,...,y,, in &'. Define J to be the ideal generated by the elements of
G” and by the elements of the set

{az] z € 3,a € B,a> z};
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that is,
(3.20) J:=(6"U{az|z € 3,a€ B,a>z}).

Since every word of length N has some initial subword in &', we see that every
monomial in Yj,...,Y,, of length at least N is in in(/). Thus if a monomial w
is in in(J) \ J, then w must have degree at most N in Y7,...,Y;. Hence the set
M of monomials in ¥7,...,Y;, which are not in in(7) is a finite set. Let u € 9.
Consider the set of monomials, v, in elements of 3 such that vu € in(I). The
monomial ideal in k[3] generated by such v is of course finitely generated by, say,
Vy1s- s Uym, - We make the following claim.

CrLam: in([l) is generated by the finite set of monomials
(3.21) &"U{vyulueM1<i<m,}U{za|z€3,a€®,z>a}.

Proof: Let r € in(I). We may assume that r is a monomial of the form vu, where
w is a monomial in Yy,..., ¥, and v is a monomial in elements of 3. If u ¢ 9N,
then some initial subword of w must be in &” and we obtain the desired result.
Hence v € 9. By construction, v is in the monomial ideal of k[3] generated by
Uy 1+ s Uym, aDd 80 we again see that vu is in the ideal generated by the set
given in item (3.21). |

From the claim we sece that in(/) is finitely generated and hence I is finitely
generated. It follows that B is finitely presented. By Corollary 2.1, we have
that B has a rational Hilbert series with respect to the vector space spanned by
elements of item (3.13). |

From this we obtain the following corollary.

COROLLARY 3.1: The algebra A has a rational Hilbert series with respect to
some vector space.

Let W denote the k-vector space spanned by the elements of &. By construc-
tion, ®(T®) C A and it generates A as a k-algebra and has the property that
14 € ®(T®). From our theorem, the vector space W C B has the property that
dim(W") = f(n) for some polynomial f, for all n sufficiently large. Since Wgq is
a gencrating subspace for A and ¢ is regular, we have

dim((Wq)") = dim(W")
and hence A, too, has rational Hilbert series. |

We conjecture the following.
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CONJECTURE 3.1: Let A be a finitely generated right Noetherian PI algebra.
Then A is finitely presented.

In the case that A is a finitely generated Noetherian PI ring, it is known (see
[7]) that GKdim(A) = GKdim(A/P) for some P € Spec(A). It follows that A
has integer GK dimension in the case that A is a finitely generated Noetherian
PI algebra. We therefore make the following conjecture.

CONJECTURE 3.2: Let A be a finitely generated Noetherian PI algebra. Then
A has a rational Hilbert series with respect to some generating vector space V.
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